How do you test the improper integral #int x^-2dx# from #[-1,1]# and evaluate if possible?

1 Answer
Apr 21, 2017

The improper integral:

#int_(-1)^1 x^(-2)dx#

is divergent.

Explanation:

Consider first that #x^-2# is an even function:

#(-x)^-2 = 1/(-x)^2 = 1/x^2= x^(-2)#

so that:

#int_(-1)^1 x^(-2)dx = 2int_0^1 x^-2dx#

Now pose:

#f(t) = int_t^1 x^-2dx = [x^-1/(-1)]_t^1 = -1+1/t= (1-t)/t#

So that:

#int_0^1 x^(-2)dx = lim_(t->0^+) f(t) = lim_(t->0^+) (1-t)/t = +oo#

then the improper integral:

#int_(-1)^1 x^(-2)dx#

is divergent.