What are the coordinates of the #x#-intercepts of the graph of #y=2x^2+6x-20#?
2 Answers
Intercepts are
Explanation:
For
So we have
or
or
or
or
or
or
or
Hence, intercepts are
graph{2x^2+6x-20 [-10, 10, -30, 30]}
X-intercepts are -
#(2,0)#
#(-5, 0)#
Explanation:
Given -
#y=2x^2+6x-20#
To find the x-intercept, put
#2x^2+6x-20=0#
Solve for
#2x^2+6x=20#
#2/2x^2+6/2x=20/2# [divide both sides by coefficient of#x^2# ]
#x^2+3x=10#
#x^2+3x+9/4=10+9/4# [divide the coefficient of#x# by#2# and square it. Add the value to both sides]
#x^2+3x+9/4=(40+9)/4=49/4#
#(x+3/2)^2=49/4#
#x+3/2=+-7/2#
#x=7/2-3/2=4/2=2#
#(2,0)#
#x=-7/2-3/2=-10/2=-5#
#(-5, 0)#