How do you factor #8x^6 - 27y^6#?
2 Answers
Explanation:
What jumps out at me is that everything in this expression can be expressed in terms of cubes:
and, in fact, we can factor this using the general formula:
so let's do that.
#= (sqrt(2)x-sqrt(3)y)(2x^2+sqrt(6)xy+3y^2)(sqrt(2)x+sqrt(3)y)(2x^2-sqrt(6)xy+3y^2)#
Explanation:
If we allow irrational coefficients, then this sextic expression will factor as far as a mixture of linear and quadratic factors.
Use the following identities:
Difference of squares:
#a^2-b^2 = (a-b)(a+b)#
Difference of cubes:
#a^3-b^3=(a-b)(a^2+ab+b^2)#
Sum of cubes:
#a^3+b^3=(a+b)(a^2-ab+b^2)#
Using the difference of squares:
#8x^6-27y^6 = (2sqrt(2)x^3)^2-(3sqrt(3)y^3)^2#
#color(white)(8x^6-27y^6) = (2sqrt(2)x^3-3sqrt(3)y^3)(2sqrt(2)x^3+3sqrt(3)y^3)#
#color(white)(8x^6-27y^6) = ((sqrt(2)x)^3-(sqrt(3)y)^3)((sqrt(2)x)^3+(sqrt(3)y)^3)#
Using the difference of cubes:
#(sqrt(2)x)^3-(sqrt(3)y)^3 = (sqrt(2)x-sqrt(3)y)((sqrt(2)x)^2+(sqrt(2)x)(sqrt(3)y)+(sqrt(3)(y))^2)#
#color(white)((sqrt(2)x)^3-(sqrt(3)y)^3) = (sqrt(2)x-sqrt(3)y)(2x^2+sqrt(6)xy+3y^2)#
Using the sum of cubes:
#(sqrt(2)x)^3+(sqrt(3)y)^3 = (sqrt(2)x+sqrt(3)y)((sqrt(2)x)^2-(sqrt(2)x)(sqrt(3)y)+(sqrt(3)(y))^2)#
#color(white)((sqrt(2)x)^3+(sqrt(3)y)^3) = (sqrt(2)x+sqrt(3)y)(2x^2-sqrt(6)xy+3y^2)#
Putting it all together:
#8x^6-27y^6#
#= (sqrt(2)x-sqrt(3)y)(2x^2+sqrt(6)xy+3y^2)(sqrt(2)x+sqrt(3)y)(2x^2-sqrt(6)xy+3y^2)#
Notes
What is interesting about this problem is that the coefficients
#8x^6-27y^6 = (2x^2-3y^2)(4x^4+6x^2y^2+9y^4)#
If we then decide to allow irrational coefficients then the first of these factors fairly straightforwardly as:
#2x^2-3y^2 = (sqrt(2)x-sqrt(3)y)(sqrt(2)x+sqrt(3)y)#
but the second is not so straightforward...
#4x^4+6x^2y^2+9y^4#
will not factor as a "quadratic in
To factor it, we can consider the following:
#(a^2-kab+b^2)(a^2+kab+b^2) = a^4+(2-k^2)a^2b^2+b^4#
We can match
#(2x^2-sqrt(6)kxy+3y^2)(2x^2+sqrt(6)kxy+3y^2)#
#= 4x^4+(12-6k^2)x^2y^2+9y^4#
So to match
Using
#(2x^2-sqrt(6)xy+3y^2)(2x^2+sqrt(6)xy+3y^2) = 4x^4+6x^2y^2+9y^4#