How do you factor #x^4-x^2-x-1# completely ?
1 Answer
where
Explanation:
Given:
#x^4-x^2-x+1#
First notice that the sum of the coefficients is
#1-1-1+1 = 0#
Hence we can tell that
#x^4-x^2-x+1 = (x-1)(x^3+x^2-1)#
Factoring the remaining cubic is somewhat more complicated:
Discriminant
The discriminant
#Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd#
In our example,
#Delta = 0+0+4-27+0 = -23#
Since
Tschirnhaus transformation
To make the task of solving the cubic simpler, we make the cubic simpler using a linear substitution known as a Tschirnhaus transformation.
#0=27(x^3+x^2-1)#
#=27x^3+27x^2-27#
#=(3x+1)^3-3(3x+1)-25#
#=t^3-3t-25#
where
Cardano's method
We want to solve:
#t^3-3t-25=0#
Let
Then:
#u^3+v^3+3(uv-1)(u+v)-25=0#
Add the constraint
#u^3+1/u^3-25=0#
Multiply through by
#(u^3)^2-25(u^3)+1=0#
Use the quadratic formula to find:
#u^3=(25+-sqrt((-25)^2-4(1)(1)))/(2*1)#
#=(25+-sqrt(625-4))/2#
#=(25+-sqrt(621))/2#
#=(25+-3sqrt(69))/2#
Since this is Real and the derivation is symmetric in
#t_1=root(3)((25+3sqrt(69))/2)+root(3)((25-3sqrt(69))/2)#
and related Complex roots:
#t_2=omega root(3)((25+3sqrt(69))/2)+omega^2 root(3)((25-3sqrt(69))/2)#
#t_3=omega^2 root(3)((25+3sqrt(69))/2)+omega root(3)((25-3sqrt(69))/2)#
where
Now
#x_1 = 1/3(-1+root(3)((25+3sqrt(69))/2)+root(3)((25-3sqrt(69))/2))#
#x_2 = 1/3(-1+omega root(3)((25+3sqrt(69))/2)+omega^2 root(3)((25-3sqrt(69))/2))#
#x_3 = 1/3(-1+omega^2 root(3)((25+3sqrt(69))/2)+omega root(3)((25-3sqrt(69))/2))#