How do you find the y intercept, axis of symmetry and the vertex to graph the function #f(x)=2x^2+5x#?

1 Answer
May 17, 2017

#y_"intercept"->(x,y)=(0,0)#

#x_"intercepts"=0 and x=-5/2#

Vertex#->(x,y)=(-5/4,-25/8)#

Explanation:

#color(blue)("Determine the y-intercept")#

Write as: #y=2x^2+5x+0#

The y-intercept is the value of the constant so this is at #y=0#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine the vertex by completing the square")#

given the standard form of #y=ax^2+bx+c#

Start by writing as:

#y=a(x^2+b/a x)+c+k" "->" "y=2(x^2+5/2x)+0+k#

Where #k# is a correction for an error this process introduces
.....................................................................................
Move the square root to outside the brackets:

#y=a(x+b/a x)^2+c+k" "->" "y=2(x+5/2x)^2+0+k#
............................................................................................
Discard the #x# from #b/ax#

#y=a(x+b/a )^2+c+k" "->" "y=2(x+5/2)^2+0+k#
...........................................................................................
Halve the #b/a#

#y=a(x+b/(2a) )^2+c+k" "->" "y=2(x+5/4)^2+0+k#
....................................................................................
The error comes from: #a(???+b/(2a))^2 = a(b^2/(4a^2))=b^2/(4a)#

Set #b^2/(4a)+k=0" "->" "2(25/16)+k=0#

#=>k=-25/8#
..........................................................................................
#y=a(x+b/(2a) )^2+c+k" "->" "y=2(x+5/4)^2-25/8#

#x_"vertex"=(-1)xxb/(2a)" "->" "(-1)xx(+5/4)=-5/4#
#y_"vertex"=c+k" "->" 0-25/8#

Vertex#->(x,y)=(-5/4,-25/8)#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine x-intercepts")#

Using: #y=2(x+5/4)^2-25/8#

Set #y=0#

Add #25/8# to both sides

#+25/8=2(x+5/4)^2#

Divide both sides by 2

#25/16=(x+5/4)^2#

Square root both sides

#+-sqrt(25/16)-5/4=x#

#x=5/4+-5/4#

#x=0 and x=-5/2#

Tony B