How do you simplify #root3(16y^5)#?

1 Answer
Jun 17, 2017

See a solution process below:

Explanation:

First, we can rewrite the radical as:

#root(3)(16y^5) => root(3)(8y^3 * 2y^2)#

We can now use this rule for radicals to simplify this expression:

#root(n)(color(red)(a) * color(blue)(b)) = root(n)(color(red)(a)) * root(n)(color(blue)(b))#

#root(3)(color(red)(8y^3) * color(blue)(2y^2)) = root(3)(color(red)(8y^3)) * root(3)(color(blue)(2y^2)) => 2yroot(3)(2y^2)#