How do you find the zeros of #g(x)=33x^2-9x-24#?
1 Answer
Jun 24, 2017
Explanation:
#"note that " g(1)=0rArr(x-1)" is a factor"#
#g(x)=color(red)(33x)(x-1)color(magenta)(+33x)-9x-24#
#color(white)(g(x))=color(red)(33x)(x-1)color(red)(+24)(x-1)color(magenta)(+24)-24#
#color(white)(g(x))=color(red)(33x)(x-1)color(red)(+24)(x-1)+0#
#rArrg(x)=(x-1)(color(red)(33x+24))=0#
#"equate each factor to zero"#
#x-1=0rArrx=1larr" is a zero"#
#33x+24=0rArrx=-24/33larr" is a zero"#