How do you factor #2x^3-125#?
1 Answer
Jun 24, 2017
Explanation:
The difference of cubes identity can be written:
#a^3-b^3 = (a-b)(a^2+ab+b^2)#
Note that
We can treat it as a cube by using irrational coefficients, to find:
#2x^3 = (root(3)(2)x)^3#
and hence:
#2x^3-125 = (root(3)(2)x)^3-5^3#
#color(white)(2x^3-125) = (root(3)(2)x-5)((root(3)(2)x)^2+(root(3)(2)x)(5)+5^2)#
#color(white)(2x^3-125) = (root(3)(2)x-5)(root(3)(4)x^2+5root(3)(2)x+25)#
...noting that we have used
#(root(3)(2))^2 = root(3)(2^2) = root(3)(4)#