What are the points of inflection of #f(x)=xsinx # on the interval #x in [0,2pi]#?

1 Answer
Jul 7, 2017

Please see below.

Explanation:

Point of inflection of #f(x)=xsinx# is where an increasing slope starts decreasing or vice-versa. At this point second derivative #(d^2f(x))/(dx^2)=0#.

As such using product formula #f(x)=xsinx#,

#(df(x))/(dx)=sinx+xcosx# and

#(d^2f(x))/(dx^2)=cosx+cosx-xsinx=2cosx-xsinx#

Now #2cosx-xsinx=0# i.e. #xsinx=2cosx#

or #x=2cotx#

and solution is given by the points where the function #x-2cotx# cuts #x#-axis.
graph{x-2cotx [-2, 8, -2.5, 2.5]}

Below we give the graph of #f(x)=xsinx# and observe that at these points slope of the curve changes accordingly.
graph{xsinx [-2, 8, -5, 5]}