How do you expand #(a+2b)^4#?

1 Answer
Jul 16, 2017

#a^4+8a^3b+24a^2b^2+32ab^3+16b^4#

Explanation:

#"we can expand using the appropriate row of coefficients"#
#"from "color(blue)"Pascal's triangle"#

#"for " n=4" the coefficients are"#

#color(white)(xxxxxx)1color(white)(x)4color(white)(x)6color(white)(x)4color(white)(x)1#

#"with decreasing powers of "a" from "a^4toa^0#

#"and increasing powers of "2b" from "(2b)^0to(2b)^4#

#rArr(a+2b)^4#

#=1.a^4(2b)^0+4.a^3(2b)^1+6.a^2(2b)^2+4.a(2b)^3#
#color(white)(=)+1.(2b)^4#

#=a^4+8a^3b+24a^2b^2+32ab^3+16b^4#