if #sinx+cosx=a# find #sin^3(x)+cos^3(x)# in terms of #a#?

#Sinx+cosx=a#

# sin^3(x)+cos^3(x)=?#

2 Answers
Jul 17, 2017

# sin^3x+cos^3x = 1/2a(3-a^2) #

Explanation:

Consider #(sinx+cosx)^2#:

#(sinx+cosx)^2 =sin^2x+2sinxcosx+cos^2x #

Using #sinx+cosx=a# in the above we have;

# a^2 =sin^2x+cos^2x+2sinxcosx #
# \ \ \ =1+2sinxcosx #
# => sinxcosx = (a^2-1)/2 #

Consider now, #(sinx+cosx)^3#:

#(sinx+cosx)^3 =sin^3x+3sin^2xcosx+3sinxcos^2x+cos^3x #
#" " =sin^3x+cos^3x+3sinxcosx(sinx+cosx) #

Again, using #sinx+cosx=a# we have:

# a^3 =sin^3x+cos^3x+3asinxcosx #
# \ \ \ =sin^3x+cos^3x+3a * (a^2-1)/2 #

# => sin^3x+cos^3x = a^3 - 3a * (a^2-1)/2 #
# " " = (2a^3 - 3a^3+3a)/2 #
# " " = (3a-a^3)/2 #
# " " = 1/2a(3-a^2) #

Jul 19, 2017

#sin^3x+cos^3x#

#=(sinx+cosx)(sin^2x+cos^2x-sinx cosx)#

#=a(1-1/2xx2sinx cosx)#

#=a(1-1/2xx((sinx +cosx)^2-1)#

#=a(1-1/2xx(a^2-1))#

#=a/2(2-a^2+1)#

#=a/2(3-a^2)#