if #sinx+cosx=a# find #sin^3(x)+cos^3(x)# in terms of #a#?
#Sinx+cosx=a#
# sin^3(x)+cos^3(x)=?#
2 Answers
# sin^3x+cos^3x = 1/2a(3-a^2) #
Explanation:
Consider
#(sinx+cosx)^2 =sin^2x+2sinxcosx+cos^2x #
Using
# a^2 =sin^2x+cos^2x+2sinxcosx #
# \ \ \ =1+2sinxcosx #
# => sinxcosx = (a^2-1)/2 #
Consider now,
#(sinx+cosx)^3 =sin^3x+3sin^2xcosx+3sinxcos^2x+cos^3x #
#" " =sin^3x+cos^3x+3sinxcosx(sinx+cosx) #
Again, using
# a^3 =sin^3x+cos^3x+3asinxcosx #
# \ \ \ =sin^3x+cos^3x+3a * (a^2-1)/2 #
# => sin^3x+cos^3x = a^3 - 3a * (a^2-1)/2 #
# " " = (2a^3 - 3a^3+3a)/2 #
# " " = (3a-a^3)/2 #
# " " = 1/2a(3-a^2) #