Show that the sum of the interior angles of a Quadrilateral is 360 degrees?
1 Answer
Consider a Quadrilateral
For the triangle
We know the interior angles add up to
#180^o#
# :. angleBAC + angleACB + angleABC = 180^o# ..... [A]
Similarly, for the triangle
# :. angleCAD + angleADC + angleACD = 180^o# ..... [B]
Now:
# angleBAD = angleBAC + angleCAD # ..... [C]
# angleBCD = angleACB + angleACD # ..... [D]
And the sum of the interior angles of the Quadrilateral
# S = angleABC + angleBCD + angleCDA + angleBAD #
Using
# S = angleABC + (angleACB + angleACD) + #
# " " angleADC + (angleBAC + angleCAD) #
# \ \ = (angleBAC + angleACB + angleABC) + #
# " " (angleCAD + angleADC + angleACD) #
and, using
# S = 180^o + 180^o #
# \ \ = 360^o \ \ # QED