#sin x + cos x + 2.sqrt(2) . sin x . cos x= 0# or
#cosx = -sinx/(1+2sqrt2 sinx)#
now making #y = sinx# we have
#sqrt(1-y^2) = -y/(1+2sqrt2 y)^2# or squaring both sides
#1-y^2=y^2/(1+2sqrt2y)^2# or
#(1-y^2)(1+2sqrt2y)^2-y^2=0# or
#(2y^2+2sqrt2y+1)(-4y^2+2sqrt2y+1)=0# then we have
#{(2y^2+2sqrt2y+1=0->{(y=-1/sqrt2),(y=-1/sqrt2):}),(-4y^2+2sqrt2y+1=0->{(y=1/4 (sqrt[2] - sqrt[6])),(y=1/4 (sqrt[2] + sqrt[6])):}):}#
or
#sinx={(-1/sqrt2->x = (5pi)/4 + 2 k pi),(1/4 (sqrt[2] - sqrt[6])->x = arcsin(1/4 (sqrt[2] - sqrt[6]))+2kpi),(1/4 (sqrt[2] + sqrt[6])->x = pi-arcsin(1/4 (sqrt[2] + sqrt[6]))+2kpi):}#