How do you find all solutions of the equation #sin(x+pi/3)+sin(x-pi/3)=1# in the interval #[0,2pi)#?
1 Answer
Aug 10, 2017
Explanation:
Use the following identities to solve this equation
#sin(A + B) = sinAcosB + sinBcosA#
#sin(A - B) = sinAcosB - sinBcosA#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#sinxcos(pi/3) + sin(pi/3)cosx + sinxcos(pi/3) - sin(pi/3)cosx = 1#
#1/2sinx + sqrt(3)/2cosx + 1/2sinx - sqrt(3)/2cosx = 1#
The cosines obviously cancel each other out, so we are left with:
#1/2sinx + 1/2sinx = 1#
#sinx = 1#
#x = arcsin(1)#
#x= pi/2#
This will be our only solution on
Hopefully this helps!