Let's rearrange the inequality
#3/(x-1)-4/x>=1#
#3/(x-1)-4/x-1>=0#
#(3x-4(x-1)-x(x-1))/(x(x-1))>=0#
#(3x-4x+4-x^2+x)/(x(x-1))>=0#
#(4-x^2)/(x(x-1))>=0#
#((2-x)(2+x))/(x(x-1))>=0#
Let #f(x)=((2-x)(2+x))/(x(x-1))#
We can build the sign chart
#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaa)##-2##color(white)(aaaaaa)##0##color(white)(aaaa)##1##color(white)(aaaaa)##2##color(white)(aaaa)##+oo#
#color(white)(aaaa)##2+x##color(white)(aaaaa)##-##color(white)(aa)##0##color(white)(aaa)##+##color(white)(aaa)##+##color(white)(aaa)##+##color(white)(aaa)##+#
#color(white)(aaaa)##x##color(white)(aaaaaaaa)##-##color(white)(aa)####color(white)(aaaa)##-##color(white)(a)##||##color(white)(a)##+##color(white)(aaa)##+##color(white)(aaa)##+#
#color(white)(aaaa)##x-1##color(white)(aaaaa)##-##color(white)(aa)####color(white)(aaaa)##-##color(white)(a)####color(white)(aa)##-##color(white)(a)##||##color(white)(a)##+##color(white)(aaa)##+#
#color(white)(aaaa)##2-x##color(white)(aaaaa)##+##color(white)(aa)####color(white)(aaaa)##+##color(white)(a)####color(white)(aa)##+##color(white)(a)####color(white)(aa)##+##color(white)(a)##0##color(white)(a)##-#
#color(white)(aaaa)##f(x)##color(white)(aaaaaa)##-##color(white)(aa)##0##color(white)(aaa)##+##color(white)(a)##||##color(white)(a)##-##color(white)(a)##||##color(white)(a)##+##color(white)(a)##0##color(white)(a)##-#
Therefore,
#f(x)>=0# when # x in [-2,0) uu (1, 2]#
graph{3/(x-1)-4/x-1 [-35.57, 37.5, -25.57, 10.98]}