How do you differentiate #y= sqrt(x) e^(x^2) (x^2+3)^5#?

1 Answer
Sep 10, 2017

#dy/dx = (sqrt(x)e^(x^2)(x^2 + 3)^5)(1/(2x) + 2x + (10x)/(x^2 + 3))#

Explanation:

I would use logarithmic differentiation.

#lny = ln(sqrt(x)e^(x^2)(x^2 + 3)^5))#

Using #ln(ab) = ln(a) + ln(b)#.

#lny = lnsqrt(x) + ln(e^(x^2)) + ln(x^2 + 3)^5#

#lny = lnx^(1/2) + ln(e^(x^2)) + ln(x^2 + 3)^5#

Now we use #lna^n = nlna#.

#lny = 1/2lnx + x^2ln(e) + 5ln(x^2 + 3)#

#lny = 1/2lnx + x^2 + 5ln(x^2 +3)#

Now the derivative is given by the chain rules and #d/dx(lnx) = 1/x#.

#1/y(dy/dx) = 1/(2x) + 2x + (5(2x))/(x^2 + 3)#

#dy/dx= y(1/(2x) + 2x + (10x)/(x^2 + 3))#

#dy/dx = (sqrt(x)e^(x^2)(x^2 + 3)^5)(1/(2x) + 2x + (10x)/(x^2 + 3))#

Hopefully this helps!