How do you differentiate #y= sqrt(x) e^(x^2) (x^2+3)^5#?
1 Answer
Sep 10, 2017
Explanation:
I would use logarithmic differentiation.
#lny = ln(sqrt(x)e^(x^2)(x^2 + 3)^5))#
Using
#lny = lnsqrt(x) + ln(e^(x^2)) + ln(x^2 + 3)^5#
#lny = lnx^(1/2) + ln(e^(x^2)) + ln(x^2 + 3)^5#
Now we use
#lny = 1/2lnx + x^2ln(e) + 5ln(x^2 + 3)#
#lny = 1/2lnx + x^2 + 5ln(x^2 +3)#
Now the derivative is given by the chain rules and
#1/y(dy/dx) = 1/(2x) + 2x + (5(2x))/(x^2 + 3)#
#dy/dx= y(1/(2x) + 2x + (10x)/(x^2 + 3))#
#dy/dx = (sqrt(x)e^(x^2)(x^2 + 3)^5)(1/(2x) + 2x + (10x)/(x^2 + 3))#
Hopefully this helps!