If #f(x)=sin2x# then what is the #75^(th)# derivative?

1 Answer
Sep 25, 2017

# f^((75))(x) = -2^75 cos2x #
# \ \ \ \ \ \ \ \ \ \ \ \ \ \ = -37778931862957161709568 cos2x #

Explanation:

If we have:

# f(x) = sin2x #

Then repeatedly differentiating wrt #x# we get:

# \ \ \ \ f(x) = sin2x #
# \ \ \ f'(x) = 2cos2x #
# \ f''(x) = 2(-2sin2x) \ \ = -2^2 sin2x #
# f'''(x) = -2^2 (2cos2x) = -2^3 cos2x #
# f^((4))(x) = 2^4 sin2x #
#vdots #

After which the pattern continues with a cycle of 4, so we can represent the #n^(th)# derivative by:

# f^((n))(x) = { (2^nsin2x, n mod 4 = 0), (2^ncos2x, n mod 4 = 1), (-2^nsin2x, n mod 4 = 2), (-2^ncos2x, n mod 4 = 3) :} #

Now #75 mod 4 = 3#, and so we can deduce that:

# f^((75))(x) = -2^75 cos2x #
# \ \ \ \ \ \ \ \ \ \ \ \ \ \ = -37778931862957161709568 cos2x #