If #f(x)=sin2x# then what is the #75^(th)# derivative?
1 Answer
Sep 25, 2017
# f^((75))(x) = -2^75 cos2x #
# \ \ \ \ \ \ \ \ \ \ \ \ \ \ = -37778931862957161709568 cos2x #
Explanation:
If we have:
# f(x) = sin2x #
Then repeatedly differentiating wrt
# \ \ \ \ f(x) = sin2x #
# \ \ \ f'(x) = 2cos2x #
# \ f''(x) = 2(-2sin2x) \ \ = -2^2 sin2x #
# f'''(x) = -2^2 (2cos2x) = -2^3 cos2x #
# f^((4))(x) = 2^4 sin2x #
#vdots #
After which the pattern continues with a cycle of 4, so we can represent the
# f^((n))(x) = { (2^nsin2x, n mod 4 = 0), (2^ncos2x, n mod 4 = 1), (-2^nsin2x, n mod 4 = 2), (-2^ncos2x, n mod 4 = 3) :} #
Now
# f^((75))(x) = -2^75 cos2x #
# \ \ \ \ \ \ \ \ \ \ \ \ \ \ = -37778931862957161709568 cos2x #