How do you solve #sqrt(x + 6) = x# and find any extraneous solutions?
1 Answer
Oct 9, 2017
Explanation:
#color(blue)"squaring both sides"#
#(sqrt(x+6))^2=x^2#
#rArrx+6=x^2#
#"rearrange in standard form "ax^2+bx+c=0#
#rArrx^2-x-6=0#
#"the factors of - 6 which sum to - 1 are - 3 and + 2"#
#rArr(x-3)(x+2)=0#
#"equate each factor to zero and solve for x"#
#x-3=0rArrx=3#
#x+2=0rArrx=-2#
#color(blue)"As a check"#
#"substitute each of the possible solutions into the"#
#"original equation to test their validity"#
#x=3tosqrt(3+6)=sqrt9=3=xrArr" valid solution"#
#x=-2tosqrt(-2+6)=sqrt4=2!=xrArr"extraneous"#