Evaluate the integral #int \ 1/(x^2sqrt(x^2-9)) \ dx #?
3 Answers
Explanation:
We substitute,
Enjoy Maths.!
# int \ 1/(x^2sqrt(x^2-9)) \ dx = 1/9 sqrt(1-9/x^2) + C #
Explanation:
We seek:
# I = int \ 1/(x^2sqrt(x^2-9)) \ dx #
We can write the integral as follows:
# I = int \ 1/(x^2sqrt(9(x^2/9-1))) \ dx #
# \ \ = int \ 1/(x^2sqrt(9)sqrt((x/3)^2-1)) \ dx #
# \ \ = 1/3 \ int \ 1/(x^2 sqrt((x/3)^2-1)) \ dx #
Let us attempt a substitution of the form:
# 3sec theta = x => 3sectheta tantheta (d theta)/dx = 1 #
Then substituting into the integral, we get:
# I = 1/3 \ int \ 1/((3sec theta)^2 sqrt((sec theta)^2-1)) \ 3sectheta tantheta \ d theta #
# \ \ = int \ (sectheta tantheta)/(9sec^2 theta sqrt(sec^2theta-1)) \ d theta #
# \ \ = 1/9 \ int \ (tantheta)/(sec theta sqrt(tan^2 theta)) \ d theta #
# \ \ = 1/9 \ int \ (tantheta)/(sec theta tan theta) \ d theta #
# \ \ = 1/9 \ int \ (1)/(sec theta) \ d theta #
# \ \ = 1/9 \ int \ cos theta \ d theta #
# \ \ = 1/9 sin theta + C #
# \ \ = 1/9 sqrt(1-cos^2 theta) + C #
# \ \ = 1/9 sqrt(1-(1/sec^2 theta)) + C #
And we can now restore the earlier substitution:
# I = 1/9 sqrt(1-(1/(x/3)^2)) + C #
# \ \ = 1/9 sqrt(1-(1/(x^2/9)) + C #
# \ \ = 1/9 sqrt(1-9/x^2) + C #
Explanation:
Restricting to the interval
with
use now the trigonometric identity:
so that:
and as in the selected interval the tangent is positive:
To undo the substitution note that:
and as in the interval the sine is positive:
So:
And using the substitution