How do you determine if #a_n(1+1/sqrtn)^n# converge and find the limits when they exist?

2 Answers
Nov 1, 2017

For #a_n > 0# the sequence

#a_n(1+1/sqrtn)^n #

is convergent if the sequence:

#a_n e^sqrtn#

is also convergent, and in such case:

#lim_(n->oo) a_n(1+1/sqrtn)^n = lim_(n->oo) a_n e^sqrtn#

Explanation:

Given the sequence:

#b_n = a_n(1+1/sqrtn)^n#

if #a_n > 0#, consider the sequence obtained taking the logarithm of each term:

#c_n = ln(b_n) = ln(a_n(1+1/sqrtn)^n)#

Using the properties of logarithms:

#c_n =ln(a_n) +nln(1+1/sqrtn)#

that we can also write as:

#c_n =ln(a_n) +sqrtn ln(1+1/sqrtn)/(1/sqrtn)#

Now use the limit:

#lim_(x->0) ln(1+x)/x = 1#

which implies that:

#lim_(n->oo) ln(1+1/sqrtn)/(1/sqrtn) = 1#

and we have that:

#lim_(n->oo) c_n = lim_(n->oo) ( ln(a_n) + sqrtn) = lim_(n->oo) ln(a_n) +ln(e^sqrtn) = lim_(n->oo) ln(a_n e^sqrtn)#

If this last limit exists and is finite, i.e. if:

# lim_(n->oo) ln(a_n e^sqrtn) = L#

Then, as the exponential and the logarithm are continuous functions:

#lim_(n->oo) a_n(1+1/sqrtn)^n = lim_(n->oo) e^(c_n) = e^((lim_(n->oo) c_n)) = e^L#

and:

#e^L = e^(( lim_(n->oo) ln(a_n e^sqrtn) )) = lim_(n->oo) e^ ln(a_n e^sqrtn) = lim_(n->oo) a_n e^sqrtn#

Thus if the #a_n# are positive (or at least positive for #n > N#) we can conclude that the sequence

#a_n(1+1/sqrtn)^n #

is convergent if the sequence:

#a_n e^sqrtn#

is also convergent, and in such case:

#lim_(n->oo) a_n(1+1/sqrtn)^n = lim_(n->oo) a_n e^sqrtn#

Nov 1, 2017

See below.

Explanation:

Assuming that the formulation is

#lim_(n->oo) a_n = (1+1/sqrtn)^n# then

#a_n = (1+1/sqrtn)^n = ((1+1/sqrtn)^sqrtn)^sqrtn#

so

#lim_(n->oo)a_n approx lim_(n->oo)e^sqrtn = oo# so

#a_n# diverges with #n#.