What is the net area between #f(x) = e^(3x)-4x# and the x-axis over #x in [1, 2 ]#?

1 Answer
Dec 4, 2017

#1/3e^6-1/3e^3-6~=121.78#

Explanation:

We can represent this area as the integral of #f(x)# on the interval #[1,2]#:
#int_1^2e^(3x)-4x\ dx#

We start by computing the antiderivative:
#int\ e^(3x)-4x\ dx=int\ e^(3x)\ dx-int\ 4x\ dx#

The left one can be solved using a u-substitution with #u=3x# and #(du)/dx=3#:
#int\ e^(3x)\ dx=int\ e^u/3\ du=e^u/3=e^(3x)/3#

So now we know:
#int\ e^(3x)-4x\ dx=e^(3x)/3-2x^2#

We can then evaluate the definite integral:
#int_1^2e^(3x)-4x\ dx=[e^(3x)/3-2x^2]_1^2=(1/3e^6-8)-(1/3e^3-2)#

#=1/3e^6-1/3e^3-8+2=1/3e^6-1/3e^3-6~=121.78#