A parallelogram has sides with lengths of #7 # and #15 #. If the parallelogram's area is #8 #, what is the length of its longest diagonal?

1 Answer
Dec 5, 2017

#BD=sqrt(274+2sqrt(10961))=21.986...#

Explanation:

Let the parallelogram #ABCD# , #AB=7#, #BC=15# and #∠ABC# be acute angle.
enter image source here
(I'm not good at drawing figures.The acutual parallelogram would be far flatter.)

Then, #BD# is the longest diagonal.

If the parallelogram's area is #8#, the area of #△BCD# is #4#.
Let #∠BCD=theta#.

#1/2*BC*CD*sin∠BCD=△BCD#
#1/2*15*7*sintheta=4#
#sintheta=8/105#

As #theta# is an obutase angle,
#costheta=-sqrt(1-sin^2theta)#
#=-sqrt(1-(8/105)^2)#
#=-sqrt(10961)/105≒-0.9971#

Then, calculate #BD# with law of cosine.
#BD^2=BC^2+CD^2-2*BC*CD*costheta#
#=15^2+7^2-2*15*7*(-sqrt(10961)/105)#
#=274+2sqrt(10961)#

#BD=sqrt(274+2sqrt(10961))=21.986...#