How to do this?

enter image source here

2 Answers

#0,(2pi)/3, (4pi)/3#

Explanation:

Using identity:

#cos(2x)=2cos^2x-1#

#2cos^2x-1-cosx=0#

Let #cosx=m#

#2m^2-1-m=0#

Factor:

#(2m+1)(m-1)=0=>m=1 and m=-1/2#

Substitute #m=cosx#

#cosx=1#

#cosx=-1/2#

#cosx=1=>x=0#

#cosx=-1/2=>x=(2pi)/3, (4pi)/3#

Dec 9, 2017

#0; (2pi)/3; (4pi)/3; pi#

Explanation:

cos 2x - cos x = 0
Replace cos 2s by #(2cos^2 x - 1)#
#2cos^2 x - cos x - 1 = 0.#
Solve this quadratic equation for cos x.
Since a + b + c = 0, use shortcut. The 2 real roots are:
cos x =1 and #cos x = c/a = - 1/2#
a. cos x = 1
Unit circle gives 2 solutions:
x = 0, and #x = 2pi#
b. #cos x = -1/2#
Trig table and unit circle give 2 solutions
#x = +- (2pi)/3#
The arc #- (2pi)/3# is co-terminal to arc #(4pi)/3#
Answers for #[0, 2pi]#:
#0; (2pi)/3; (4pi)/3; 2pi#