How do you differentiate the following parametric equation: # (t-tsin(t/3), -tcos(pi/2-t/3))#? Calculus Parametric Functions Derivative of Parametric Functions 1 Answer 1s2s2p Dec 23, 2017 #(dy)/(dx)=-cos(t/3)/(-tcos(t/3)-3sin(t/3)+3)# Explanation: We know that: #x=t-tsin(t/3)# #y=-cos(pi/2-t/3)# #(dy)/(dx)=(dy)/(dt)-:(dx)/(dt)# #(dy)/(dt)=d/(dt)[-cos(pi/2-t/3)]=sin(pi/2-t/3)*-1/3=-sin(pi/2-t/3)/3# #(dx)/(dt)=d/(dt)[t-tsin(t/3)]=d/(dt)[t]+d/(dt)[-tsin(t/3)]=1+d/(dt)[-t]sin(t/3)-td/(dt)[sin(t/3)]=1-sin(t/3)-(tcos(t/3))/3# #(dy)/(dx)=(-sin(pi/2-t/3)/3)/(1-sin(t/3)-(tcos(t/3))/3)# #=-cos(t/3)/(3((-tcos(t/3))/3-sin(t/3)+1))# #=-cos(t/3)/(-tcos(t/3)-3sin(t/3)+3)# Answer link Related questions How do you find the second derivative of a parametric function? How do you find derivatives of parametric functions? How do you find #dy/dx# for the curve #x=t*sin(t)#, #y=t^2+2# ? How do you find the equation of the tangent to the curve #x=t^4+1#, #y=t^3+t# at the point... How do you find #(d^2y)/(dx^2)# for the curve #x=4+t^2#, #y=t^2+t^3# ? How do you find parametric equations of a tangent line? How do you find parametric equations for the tangent line to the curve with the given parametric... How do you find the equation of a line tangent to the curve at point #t=-1# given the parametric... How do you differentiate the following parametric equation: # x(t)=t^3-5t, y(t)=(t-3) #? How do you differentiate the following parametric equation: # x(t)=lnt, y(t)=(t-3) #? See all questions in Derivative of Parametric Functions Impact of this question 1489 views around the world You can reuse this answer Creative Commons License