Write the Riemann sum to find the area under the graph of the function #f(x) = x^2# from #x = 1# to #x = 5#?

1 Answer
Feb 8, 2018

# int_1^5 \ x^2 \ dx = 124/3 #

Explanation:

We are asked to evaluate:

# I = int_1^5 \ x^2 \ dx #

Using Riemann sums. By definition of an integral, then

# int_a^b \ f(x) \ dx #

represents the area under the curve #y=f(x)# between #x=a# and #x=b#. We can estimate this area under the curve using thin rectangles. The more rectangles we use, the better the approximation gets, and calculus deals with the infinite limit of a finite series of infinitesimally thin rectangles.

That is

# int_a^b \ f(x) \ dx = lim_(n rarr oo) (b-a)/n sum_(i=1)^n \ f(a + i(b-a)/n)#

And we partition the interval #[a,b]# equally spaced using:

# Delta = {a+0((b-a)/n), a+1((b-a)/n), ..., a+n((b-a)/n) } #
# \ \ \ = {a, a+1((b-a)/n),a+2((b-a)/n), ... ,b-1 } #

Here we have #f(x)=x^2# and so we partition the interval #[1,5]# using:

# Delta = {1, 1+1(4)/n, 1+2 (4)/n, 1+3 (4)/n, ..., 4 } #

And so:

# I = int_1^5 \ (x^2) \ dx #
# \ \ = lim_(n rarr oo) 4/n sum_(i=1)^n \ f(1+(4i)/n)#
# \ \ = lim_(n rarr oo) 4/n sum_(i=1)^n \ (1+(4i)/n)^2#
# \ \ = lim_(n rarr oo) 4/n sum_(i=1)^n \ ((n+4i)/n)^2#
# \ \ = lim_(n rarr oo) 4/n sum_(i=1)^n \ 1/n^2(n+4i)^2#
# \ \ = lim_(n rarr oo) 4/n^3 sum_(i=1)^n \ (n^2+8ni+16i^2)#
# \ \ = lim_(n rarr oo) 4/n^3 {n^2 sum_(i=1)^n 1 + 8n sum_(i=1)^ni+16sum_(i=1)^ni^2)#

Using the standard summation formula:

# sum_(r=1)^n r \ = 1/2n(n+1) #
# sum_(r=1)^n r^2 = 1/6n(n+1)(2n+1) #

we have:

# I = lim_(n rarr oo) 4/n^3 {n^3 + 8n 1/2n(n+1)+16 1/6n(n+1)(2n+1)#

# \ \ = lim_(n rarr oo) 4/n^3 \ n/3 {3n^2 + 12n(n+1)+ 8(n+1)(2n+1)#

# \ \ = lim_(n rarr oo) 4/(3n^2) (3n^2 + 12n^2+12n+ 16n^2+24n+8) #

# \ \ = lim_(n rarr oo) 4/(3n^2) (31n^2+36n+ 8) #
# \ \ = 4/3 lim_(n rarr oo) (31+36/n+ 8/n^2) #
# \ \ = 4/3 (31+0+ 0) #
# \ \ = 124/3 #

Using Calculus

If we use Calculus and our knowledge of integration to establish the answer, for comparison, we get:

# I = int_1^5 \ x^2 \ dx #
# \ \ = [x^3/3]_1^5 #
# \ \ = 125/3-1/3 #
# \ \ = 124/3 #