Calculate the following limit #lim_(x->0) (a^x - b^x)/x#? The answer should be #log(b/a)#.

3 Answers
Feb 10, 2018

#lim_(x->0) (a^x-b^x)/x=ln(a/b)=log(a/b)#

Explanation:

We want to find #lim_(x->0) (a^x-b^x)/x#.

Plugging in the limiting value, we get

#(a^0-b^0)/0=(1-1)/0=0/0#

This is an indeterminate form, so we can use l'Hopital's rule

#lim_(x->0)(a^x-b^x)/x=lim_(x->0) (d/dx(a^x)-d/dx(b^x))/(d/dxx)=lim_(x->0)(a^xlna-b^xlnb)=a^0lna-b^0lnb=lna-lnb=ln(a/b)-=log(a/b)#

Feb 10, 2018

See below.

Explanation:

#(a^x-b^x)/x = (a^x-1)/x-(b^x-1)/x = (a^(0+x)-a^0)/x-(b^(0+x)-b^0)/x#

now

#lim_(x->0)(a^x-b^x)/x =lim_(x->0) (a^(0+x)-a^0)/x-lim_(x->0)(b^(0+x)-b^0)/x = lna-lnb = ln(a/b)#

Feb 10, 2018

# lim_(x rarr 0) (a^x-b^x)/x = ln(a/b)#

Explanation:

We seek the limit:

# L = lim_(x rarr 0) (a^x-b^x)/x #
# \ \ = lim_(x rarr 0) (a^x-1-b^x-(-1))/x #
# \ \ = lim_(x rarr 0) {(a^x-1)/x -(b^x-1)/x }#
# \ \ = L_a - L_b \ \ #, say ..... [A]

Where:

# L_alpha = lim_(x rarr 0) (alpha^x-1)/x #

And, we now have two different ways of calculating this limit:

Method:1

Using the limit definition of the derivative we have:

# f'(a) = lim_(h rarr 0) (f(x)-f(a))/(x-a) #

We note that:

# L_alpha = lim_(x rarr 0) (alpha^x-1)/x #
# \ \ \ \ = lim_(x rarr 0) (alpha^x-alpha^0)/(x-0) #
# \ \ \ \ = lim_(x rarr 0) (f(x)-f(0))/(x-0) \ \ \ \ # where #f(x)=alpha^x#
# \ \ \ \ = f'(0) #

And if #f(x)=alpha^x# then we have:

# f(x) =e^ln(alpha)x #
# :. f'(x)= lnalpha \ e^ln(alpha)x = ln alpha \ alpha^x#
# => f'(0) = ln alpha \ alpha^0 = ln alpha #

Method:2

Let #y = alpha^x-1 => 1+y =alpha^x #, then taking logarithms we have:

# ln(1+y) = ln alpha^x #
# \ \ \ \ \ \ \ \ \ \ \ \ \ \ = xln alpha #
# :. x = (ln(1+y))/(ln alpha) #

So we can write:

# L_alpha = lim_(x rarr 0) (alpha^x-1)/x #
# \ \ \ \ = lim_(y rarr 0) (y)/((ln(1+y))/(ln alpha)) \ \ \ \ because y rarr 0# as # x rarr 0#
# \ \ \ \ = lim_(y rarr 0) (lnalpha)/(1/yln(1+y)) #
# \ \ \ \ = lim_(y rarr 0) (lnalpha)/(ln(1+y)^(1/y)) #
# \ \ \ \ = (lnalpha)/(lim_(y rarr 0) {ln(1+y)^(1/y)}) \ \ \ \ # properties of limits
# \ \ \ \ = (lnalpha)/( ln {lim_(y rarr 0)(1+y)^(1/y)}) \ \ \ \ # monotonicity of logarithms
# \ \ \ \ = (lnalpha)/( ln e) \ \ \ \ because lim_(y rarr 0)(1+y)^(1/y)=e#
# \ \ \ \ = ln alpha \ \ \ \ because lne=1#

Consistent with the previous method:

Then using this result in conjunction with [A], we have:

# L = lna - ln b#
# \ \ = ln(a/b) \ \ \ \ # properties of logarithms