Calculate the following limit #lim_(x->0) (a^x - b^x)/x#? The answer should be #log(b/a)#.
3 Answers
Explanation:
We want to find
Plugging in the limiting value, we get
This is an indeterminate form, so we can use l'Hopital's rule
See below.
Explanation:
now
# lim_(x rarr 0) (a^x-b^x)/x = ln(a/b)#
Explanation:
We seek the limit:
# L = lim_(x rarr 0) (a^x-b^x)/x #
# \ \ = lim_(x rarr 0) (a^x-1-b^x-(-1))/x #
# \ \ = lim_(x rarr 0) {(a^x-1)/x -(b^x-1)/x }#
# \ \ = L_a - L_b \ \ # , say ..... [A]
Where:
# L_alpha = lim_(x rarr 0) (alpha^x-1)/x #
And, we now have two different ways of calculating this limit:
Method:1
Using the limit definition of the derivative we have:
# f'(a) = lim_(h rarr 0) (f(x)-f(a))/(x-a) #
We note that:
# L_alpha = lim_(x rarr 0) (alpha^x-1)/x #
# \ \ \ \ = lim_(x rarr 0) (alpha^x-alpha^0)/(x-0) #
# \ \ \ \ = lim_(x rarr 0) (f(x)-f(0))/(x-0) \ \ \ \ # where#f(x)=alpha^x#
# \ \ \ \ = f'(0) #
And if
# f(x) =e^ln(alpha)x #
# :. f'(x)= lnalpha \ e^ln(alpha)x = ln alpha \ alpha^x#
# => f'(0) = ln alpha \ alpha^0 = ln alpha #
Method:2
Let
# ln(1+y) = ln alpha^x #
# \ \ \ \ \ \ \ \ \ \ \ \ \ \ = xln alpha #
# :. x = (ln(1+y))/(ln alpha) #
So we can write:
# L_alpha = lim_(x rarr 0) (alpha^x-1)/x #
# \ \ \ \ = lim_(y rarr 0) (y)/((ln(1+y))/(ln alpha)) \ \ \ \ because y rarr 0# as# x rarr 0#
# \ \ \ \ = lim_(y rarr 0) (lnalpha)/(1/yln(1+y)) #
# \ \ \ \ = lim_(y rarr 0) (lnalpha)/(ln(1+y)^(1/y)) #
# \ \ \ \ = (lnalpha)/(lim_(y rarr 0) {ln(1+y)^(1/y)}) \ \ \ \ # properties of limits
# \ \ \ \ = (lnalpha)/( ln {lim_(y rarr 0)(1+y)^(1/y)}) \ \ \ \ # monotonicity of logarithms
# \ \ \ \ = (lnalpha)/( ln e) \ \ \ \ because lim_(y rarr 0)(1+y)^(1/y)=e#
# \ \ \ \ = ln alpha \ \ \ \ because lne=1#
Consistent with the previous method:
Then using this result in conjunction with [A], we have:
# L = lna - ln b#
# \ \ = ln(a/b) \ \ \ \ # properties of logarithms