How do you expand #(x-y)^10#?

1 Answer
Mar 5, 2018

#x^10-10x^9y+45x^8y^2-120x^7y^3+210x^6y^4-252x^5y^5#

#+210x^4y^6-120x^3y^7+45x^2y^8-xy^9+y^10#

Explanation:

For a binomial expansion:

#(x+y)^n# we have:

#((n),(r))x^(n-r)y^r#

#sum_(r=0)^(n)((n),(r))x^(n-r)y^r#

Where:

#((n),(r))=color(white)(0)^n C_(r)=(n!)/(r!(n-r)!)#

Beginning with #r=0#

#((10),(0))x^10(-y)^0+((10),(1))x^9(-y)^1+((10),(2))x^8(-y)^2#

#((10),(3))x^7(-y)^3+((10),(4))x^6(-y)^4+((10),(5))x^5(-y)^5#

#((10),(6))x^4(-y)^6+((10),(7))x^3(-y)^7+((10),(8))x^2(-y)^8#

#((10),(9))x^1(-y)^9+((10),(10))x^0(-y)^10#

Next calculate #((n),(r))#

#(1)x^10(-y)^0+(10)x^9(-y)^1+(45)x^8(-y)^2#

#(120)x^7(-y)^3+(210)x^6(-y)^4+(252)x^5(-y)^5#

#(210)x^4(-y)^6+(120)x^3(-y)^7+(45)x^2(-y)^8#

#(1)x^1(-y)^9+(1)x^0(-y)^10#

Expand brackets. Remember to pay attention to the signs of #bby#

#x^10-10x^9y+45x^8y^2-120x^7y^3+210x^6y^4-252x^5y^5#

#+210x^4y^6-120x^3y^7+45x^2y^8-xy^9+y^10#

To make this easier, there are a couple of things worth remembering:

#color(white)(0)^nC_(r)=color(white)(0)^nC_(n-r)#

And #(-y)^n# is negative for odd powers and positive for even powers.