How do you integrate #int x sqrt( 1 - x^4 )dx# using trigonometric substitution?
1 Answer
If we let
#I = int xsqrt(1 - u^2)(du)/(2x)#
#I = 1/2intsqrt( 1 - u^2) du#
This is when the trig substitution comes in. Let
#I = 1/2int sqrt(1 - sin^2theta) costheta d theta#
#I = 1/2int sqrt(cos^2theta)costheta d theta#
#I = 1/2int costhetacostheta d theta#
#I = 1/2int cos^2theta d theta#
We know that
#I = 1/2int 1/2(cos2theta + 1) d theta#
#I = 1/4int cos(2theta) + 1 d theta#
#I = 1/4(1/2sin(2theta)) + 1/4theta + C#
#I = 1/8sin(2theta) + 1/4theta + C#
Recall that
#I = 1/8(2)sinthetacostheta + 1/4theta + C#
#I = 1/4sinthetacostheta + 1/4theta + C#
From our initial
#I = 1/4usqrt(1 - u^2) + 1/4arcsin(u) + C#
#I = 1/4x^2sqrt(1 - x^4) + 1/4arcsin(x^2) + C#
Hopefully this helps!