How do you factor #8x^2+8x+2#? Algebra Polynomials and Factoring Factor Polynomials Using Special Products 1 Answer Richard · Stefan V. Mar 13, 2018 #(4x+2)(2x+1)# Explanation: #8x^2+8x+2# Find the product of the coefficient of #x^2# and the constant, or #(a*c)#,.then find two factors such that when you multiply them they will give you #16# and when you add them they will give you #8#. #8x^2+4x+4x+2# Factorise #4x(2x+1)+2(2x+1)# #(4x+2)(2x+1)# Answer link Related questions How do you factor special products of polynomials? How do you identify special products when factoring? How do you factor #x^3 -8#? What are the factors of #x^3y^6 – 64#? How do you know if #x^2 + 10x + 25# is a perfect square? How do you write #16x^2 – 48x + 36# as a perfect square trinomial? What is the difference of two squares method of factoring? How do you factor #16x^2-36# using the difference of squares? How do you factor #2x^4y^2-32#? How do you factor #x^2 - 27#? See all questions in Factor Polynomials Using Special Products Impact of this question 1458 views around the world You can reuse this answer Creative Commons License