How do you integrate #int x^2 / sqrt(16+x^2) dx# using trigonometric substitution?
1 Answer
Explanation:
Since the square root in the denominator is of the form
Therefore,
#I = int (4tantheta)^2/sqrt(16 + (4tantheta)^2) 4sec^2theta d theta#
#I = int (16tan^2theta)/sqrt(16(1 + tan^2theta)) 4sec^2theta d theta#
#I = int(16tan^2theta)/sqrt(16sec^2theta) 4sec^2theta#
#I = int(16tan^2theta)/(4sectheta) * 4sec^2theta#
#I = int16tan^2thetasectheta#
#I = int16(sec^2theta - 1)sectheta#
#I = 16int sec^3theta - sectheta#
These are two known integrals.
#I = 8secthetatantheta - 8ln|tantheta + sectheta| + C#
Now recall that
#I = 1/2xsqrt(x^2 + 16) - 8ln|(x + sqrt(x^2 + 16))/2| + C#
Hopefully this helps!