How do you integrate #int x^2 / sqrt(16+x^2) dx# using trigonometric substitution?

1 Answer
Mar 15, 2018

#I = 1/2xsqrt(x^2 + 16) - ln|(x + sqrt(x^2 + 16))/2| + C#

Explanation:

Since the square root in the denominator is of the form #sqrt(a^2 + x^2)#, we will use the substitution #x = atantheta = 4tantheta#.

Therefore, #dx =4sec^2theta d theta#.

#I = int (4tantheta)^2/sqrt(16 + (4tantheta)^2) 4sec^2theta d theta#

#I = int (16tan^2theta)/sqrt(16(1 + tan^2theta)) 4sec^2theta d theta#

#I = int(16tan^2theta)/sqrt(16sec^2theta) 4sec^2theta#

#I = int(16tan^2theta)/(4sectheta) * 4sec^2theta#

#I = int16tan^2thetasectheta#

#I = int16(sec^2theta - 1)sectheta#

#I = 16int sec^3theta - sectheta#

These are two known integrals.

#I = 8secthetatantheta - 8ln|tantheta + sectheta| + C#

Now recall that #x/4 = tantheta#, therefore #sectheta = sqrt(x^2 + 16)/4#.

#I = 1/2xsqrt(x^2 + 16) - 8ln|(x + sqrt(x^2 + 16))/2| + C#

Hopefully this helps!