How do you integrate #int 1/sqrt(4x^2-12x-16) # using trigonometric substitution?

3 Answers
Mar 21, 2018

# int dx/sqrt(4x^2-12x-16) = 1/2ln abs ((2x-3)+sqrt(4x^2-12x-16))+C#

Explanation:

Complete the square under the root at the denominator:

#int dx/sqrt(4x^2-12x-16) = int dx/sqrt( (2x-3)^2 -25)#

Substitute now:

#2x -3 = 5sect#

#dx = 5/2sect tant dt#

then:

#int dx/sqrt(4x^2-12x-16) = 5/2 int (sect tantdt)/sqrt( 25sec^2t -25)#

#int dx/sqrt(4x^2-12x-16) = 1/2 int (sect tantdt)/sqrt( sec^2t -1)#

Use now the trigonometric identity:

#sec^2t-1 = tan^2t#

Note now that the function is defined for:

#abs(2x-3) > 5#

If we restrict to the interval:

#2x-3 > 5#

then #sect# is positive and:

# sqrt( sec^2t -1) = tant#

so that:

#int dx/sqrt(4x^2-12x-16) = 1/2 int (sect tantdt)/tant = 1/2 int sectdt#

To solve this last integral there is a well known trick:

#int sect dt = int sect (sect+tant)/(sect+tant) dt#

#int sect dt = int (sec^2t+sect tant)/(sect+tant) dt#

#int sect dt = int (d(sect+ tant))/(sect+tant) dt#

#int sect dt = ln abs (sect+tant) +C#

so:

#int dx/sqrt(4x^2-12x-16) = 1/2ln abs (sect+tant) +C#

and undoing the substitution:

#int dx/sqrt(4x^2-12x-16) = 1/2ln abs ((2x-3)/5 +sqrt(((2x-3)/5)^2-1))+C#

and simplifying:

# int dx/sqrt(4x^2-12x-16) = 1/2ln abs ((2x-3)+sqrt(4x^2-12x-16))+C#

Mar 21, 2018

#I=1/2ln|(2x-3)+sqrt(4x^2-12x-16)|+C#

Explanation:

Here,
#4x^2-12x-16=4x^2-12x+9-25=(2x-3)^2-(5)^2#
So,

#I=int1/sqrt(4x^2-12x-16)dx#
#=int1/sqrt((2x-3)^2-(5)^2)dx#

Take ,#color(red)(2x-3=5secu)=>secu=(2x-3)/5and#
#=>2dx=5secutanudu#
#=>dx=5/2secutanudu#
#I=int1/sqrt(25sec^2u-25)(5/2secutanu)du#
#I=5/2int(secutanu)/(5sqrt(sec^2u-1))du#
#=1/2int(secutanu)/(tanu)du#
#=1/2intsecudu#
#=1/2ln|secu+tanu|+c#
#=1/2ln|secu+sqrt(sec^2u-1)|+c#
#=1/2ln|(2x-3)/5+sqrt(((2x-3)/5)^2)-1|+c#
#=1/2ln|(2x-3)/5+sqrt((2x-3)^2-25)/5|+c#
#=1/2[ln|(2x-3)+sqrt(4x^2-12x-16)|-ln5]+c#
#I=1/2ln|(2x-3)+sqrt(4x^2-12x-16)|+C,#
where, #C=c-1/2ln5#
It is better to use #int1/sqrt(t^2-A^2)dt=ln|t+sqrt(t^2-A^2)|+c#
for ,#2x-3=t=>dx=1/2dt=>I=int1/sqrt(t^2-5^2)(1/2dt)=1/2ln|t+sqrt(t^2-25)|+c=1/2ln|(2x-3)+sqrt(4x^2-12x-16)|+c#

Mar 21, 2018

The answer is #=1/2ln(|sqrt((2x-3)^2/25-1)+(2x-3)/5|)+C#

Explanation:

The denominator is

#sqrt(4x^2-12x-16)=2sqrt(x^2-3x-4)#

#=2sqrt(x^2-3x+9/4-4-9/4)#

#=2sqrt((x-3/2)^2-25/4)#

#=5sqrt(((2x-3)/5)^2-1)#

#int(dx)/sqrt(4x^2-12x-16)=1/2int(dx)/(sqrt((x-3/2)^2-25/4))#

Let #u=(2x-3)/5#, #=>#, #du=2/5dx#

Therefore,

#int(dx)/sqrt(4x^2-12x-16)=1/2int(du)/(sqrt(u^2-1))#

Let #u=sectheta#, #=>#, #du=secthetatanthetad theta#

#1/2int(du)/(sqrt(u^2-1))=1/2int(secthetatanthetad theta)/(sqrt(sec^2theta-1))#

#=1/2intsecthetad theta#

#=1/2int(sectheta(sectheta+tantheta)d theta)/(sectheta+tantheta)#

#=1/2int((sec^2theta+sethetatantheta)d theta)/(sec theta+ tan theta)#

Let #v=sectheta+tantheta#

#=>#, #dv=(sec^2theta+secthetatantheta)d theta#

And finally,

#intsecthetad theta=int(dv)/v#

#=1/2ln(v)#

#=1/2ln(sqrt(u^2-1)+u)#

#=1/2ln(|sqrt((2x-3)^2/25-1)+(2x-3)/5|)+C#