What is the distance between (-4,-11) and (13,-41)?

3 Answers
Mar 26, 2018

Distance=34.482...

Explanation:

Apply Pythagorean theorem, where d is the distance between the two points.

d=sqrt((13--4)^2+(-41--11)^2)
color(white)(d)=sqrt((17)^2+(-30)^2)
color(white)(d)=sqrt(1189)
color(white)(d)=34.482...

Mar 26, 2018

Explanation:

D=sqrt((y_2-y_1)^2+(x_2-x_1)^2

subbing in

D=sqrt((-41-(-11))^2+(13-(-4))^2)
D=sqrt(900+289)
D=sqrt(1189) units

Mar 26, 2018

d = sqrt 1189

Explanation:

distance between A(x_1, y_1) and (x_2, y_2):

d = sqrt((x_1-x_2)^2 + (y_1-y_2)^2) = sqrt((x_2-x_1)^2 + (y_2-y_1)^2)

in this case : d = sqrt((-4 - 13)^2 + (-11-(-41))^2)

d = sqrt (289 + 900) = sqrt 1189