How do you find the integral #int sqrt(x^3+x^2)(3x^2+2x)dx# using substitution?

2 Answers
Mar 26, 2018

Let #u = x^3 + x^2#. Then #du = 3x^2 +2xdx# and #dx= (du)/(3x^2 + 2x)#.

#I = int sqrt(u)(3x^2 + 2x)/(3x^2 + 2x) du#

#I = int sqrt(u) du#

#I = 2/3u^(3/2) + C#

#I = 2/3(x^3 + x^2)^(3/2) + C#

Hopefully this helps!

Mar 26, 2018

#I=intsqrt(x^3+x^2)(3x^2+2x)dx##=int(x^3+x^2)^(1/2)d/(dx)(x^3+x^2)dx=(x^3+x^2)^(1/2+1)/(1/2+1) +c#
#=2/3(x^3+x^2)^(3/2)+c#

Explanation:

Here,

#I=intsqrt(x^3+x^2)(3x^2+2x)dx#

Substituting

#x^3+x^2=u^2=>(3x^2+2x)dx=2udu#

#=>I=intsqrt(u^2)2udu#

#=intu2udu#

#=2intu^2 du#

#=2[u^3/3 ]+c#

#=2/3(u^2)^(3/2)+c#

#=2/3(x^3+x^2)^(3/2)+c#