You can use the #sin# angle sum formula:
#sin(color(red)A+color(blue)B)=sincolor(red)Acoscolor(blue)B+sincolor(blue)Bcoscolor(red)A#
Since #255^@# is the sum of #225^@# and #30^@#, we can write:
#color(white)=sin(255^@)#
#=sin(color(red)(225^@)+color(blue)(30^@))#
#=sin(color(red)(225^@))cos(color(blue)(30^@))+sin(color(blue)(30^@))cos(color(red)(225^@))#
Here's a unit circle to remind us of some #sin# and #cos# values:
#color(white)=sin(color(red)(225^@))cos(color(blue)(30^@))+sin(color(blue)(30^@))cos(color(red)(225^@))#
#=color(red)(color(red)-sqrt2/2)*cos(color(blue)(30^@))+sin(color(blue)(30^@))cos(color(red)(225^@))#
#=color(red)(color(red)-sqrt2/2)*color(blue)(sqrt3/2)+sin(color(blue)(30^@))cos(color(red)(225^@))#
#=color(red)(color(red)-sqrt2/2)*color(blue)(sqrt3/2)+color(blue)(1/2)*color(red)cos(color(red)(225^@))#
#=color(red)-color(red)(sqrt2/2)*color(blue)(sqrt3/2)+color(blue)(1/2)*color(red)-color(red)(sqrt2/2)#
#=color(red)-color(red)(sqrt2/2)*color(blue)(sqrt3/2)color(purple)-(color(blue)1*color(red)sqrt2)/(color(blue)2*color(red)2)#
#=color(red)-color(red)(sqrt2/2)*color(blue)(sqrt3/2)color(purple)-color(purple)sqrt2/color(purple)4#
#=color(purple)-(color(red)sqrt2*color(blue)sqrt3)/(color(red)2*color(blue)2)color(purple)-color(purple)sqrt2/color(purple)4#
#=color(purple)-color(purple)sqrt6/color(purple)4color(purple)-color(purple)sqrt2/color(purple)4#
#=color(purple)(-sqrt6)/color(purple)4+color(purple)(-sqrt2)/color(purple)4#
#=color(purple)(-sqrt6-sqrt2)/color(purple)4#
This is the result. You can use a calculator to check your work:
Hope this helps!