How do you show the #secx + 1 + (1 - tan^2x)/(secx -1) = cosx/(1 - cosx)#?
2 Answers
We have:
#1/cosx + 1 + (1 - sin^2x/cos^2x)/(1/cosx - 1) = cosx/(1 -cosx)#
#1/cosx +1 + ((cos^2x - sin^2x)/cos^2x)/((1- cosx)/cosx) = cosx/(1- cosx)#
#1/cosx + 1 + (cos^2x- sin^2x)/(cosx(1 - cosx)) = cosx/(1 -cosx)#
#(1 + cosx)/cosx + (cos^2x- sin^2x)/(cosx(1 -cosx)) = cosx/(1- cosx)#
#((1 + cosx)(1 -cosx) + cos^2x -sin^2x)/(cosx(1 - cosx)) = cosx/(1 - cosx)#
#(1 - cos^2x + cos^2x - sin^2x)/(cosx(1 - cosx)) = cosx/(1 - cosx)#
#(1 - sin^2x)/(cosx(1 -cosx)) = cosx/(1 -cosx)#
#cos^2x/(cosx(1 - cosx)) = cosx/(1 - cosx)#
#cosx/(1 - cosx) =cosx(1 - cosx)#
#LHS = RHS#
Hopefully this helps!
To prove the identity, we'll need these identities:
I'll start with the left side of the equation and manipulate it until it equals the right side:
That's the proof. Hope this helped!