How do you find the derivative of #sinx(sinx+cosx)#?
1 Answer
Apr 10, 2018
Explanation:
#"differentiate using the "color(blue)"product rule"#
#"Given "y=g(x)h(x)" then"#
#dy/dx=g(x)h'(x)+h(x)g'(x)larrcolor(blue)"product rule"#
#g(x)=sinxrArrg'(x)=cosx#
#h(x)=sinx+cosxrArrh'(x)=cosx-sinx#
#rArrdy/dx=sinx(cosx-sinx)+cosx(sinx+cosx)#
#color(white)(rArrdy/dx)=sinxcosx-sin^2x+sinxcosx+cos^2x#
#color(white)(rArrdy/dx)=2sinxcosx+cos^2x-sin^2x#
#color(white)(rArrdy/dx)=sin2x+cos2x#