How do you find the derivative of exponential function f(x)= 2 / (e^x + e^-x)^3?

1 Answer
Apr 10, 2018

d/dx (2/(e^x+e^-x)^3) = -(6 (e^x-e^-x))/(e^x+e^-x)^4=-(3sinh x)/(4cosh^4x)

Explanation:

Using the chain rule:

d/dx (2/(e^x+e^-x)^3) = 2 d/dx((e^x+e^-x)^-3)

d/dx (2/(e^x+e^-x)^3) = 2(-3)(e^x+e^-x)^-4 d/dx (e^x+e^-x)

d/dx (2/(e^x+e^-x)^3) = -6(e^x+e^-x)^-4 (e^x-e^-x)

d/dx (2/(e^x+e^-x)^3) = -(6 (e^x-e^-x))/(e^x+e^-x)^4

Note also that:

2/(e^x+e^-x)^3 = 1/4 1/((e^x+e^-x)/2)^3

2/(e^x+e^-x)^3 = 1/(4cosh^3x)

d/dx (2/(e^x+e^-x)^3) =-(3sinh x)/(4cosh^4x)