How do you use a calculator to evaluate #tan(-(25pi)/7)#? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Nghi N Apr 10, 2018 -0.48 Explanation: #tan (- 25pi/7) = tan (- tan pi/7 - 24pi) = tan (- pi/7)# #tan (-pi/7) = tan - 180/7 = tan (-25^@7142)# Calculator gives --> #tan (-25.7142) = - 0.4815# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 1404 views around the world You can reuse this answer Creative Commons License