How do you factor the expression #27x^2-3#?
2 Answers
Apr 13, 2018
Explanation:
#"take out a "color(blue)"common factor "3#
#=3(9x^2-1)#
#9x^2-1" is a "color(blue)"difference of squares"#
#•color(white)(x)a^2-b^2=(a-b)(a+b)#
#"here "9x^2=(3x)^2rArra=3x" and "b=1#
#rArr9x^2-1=(3x-1)(3x+1)#
#rArr27x^2-1=3(3x-1)(3x+1)#
Apr 13, 2018
Explanation:
Differences of two squares rule:
#a^2-b^2=(a+b)(a-b)# #=(sqrt(a^2)+sqrt(b^2))(sqrt(a^2)-sqrt(b^2))#
Because: