How do you simplify #-4sqrt(192x)#?

1 Answer
Apr 15, 2018

The answer is #-32sqrt(3x)#.

Explanation:

Note: when the variables a, b, and c are used, I am referring to a general rule that will work for every real value of a, b, or c.

Since #sqrt(a*b)=sqrt(a)*sqrt(b)#, you can rewrite this:

#-4sqrt(192x) -> -4sqrt(64)*sqrt(3x)#.

#sqrt(64)# is equal to #8#, so:

#-4sqrt(64)*sqrt(3x) -> -4*8*sqrt(3x) -> -32sqrt(3x)#, your final answer.

Hope this helps!