How to integrate intx/(cos^2 (x^2))dx∫xcos2(x2)dx ?
intx/(cos^2 (x^2))dx∫xcos2(x2)dx
3 Answers
see below
Explanation:
We have,
Substituting
Putting this value in the main integral,we get,
Or,
Or,
Explanation:
The integral is equal to
Explanation:
Let
I = int 1/(2cos^2u) duI=∫12cos2udu
I = 1/2int sec^2u duI=12∫sec2udu
This is a known integral
I = 1/2tanu + CI=12tanu+C
Reverse the substitution
I = 1/2tan(x^2) +CI=12tan(x2)+C
Hopefully this helps!