How do you factor the expression #x^4 - 256#?
2 Answers
Apr 27, 2018
Explanation:
Recall;
Recall;
Factoring;
Therefore;
Apr 27, 2018
Explanation:
#x^4-256" is a "color(blue)"difference of squares"#
#"which factors in general as"#
#•color(white)(x)a^2-b^2=(a-b)(a+b)#
#(x^2)^2=x^4" and "(16)^2=256#
#rArra=x^2" and "b=16#
#rArrx^4-256=(x^2-16)(x^2+16)#
#"factoring "x^2-16" as a "color(blue)"difference of squares"#
#rArrx^2-16=(x-4)(x+4)#
#"we can factor "x^2+16" by solving "x^2+16=0#
#x^2+16=0rArrx^2=-16rArrx=+-4i#
#rArrx^2+16=(x+4i)(x-4i)#
#rArrx^4-256=(x-4)(x+4)(x+4i)(x-4i)#