How do you prove #(tanx+sinx)/(2tanx)=cos^2(x/2)#?

3 Answers
Apr 28, 2018

We'll need these two identities to complete the proof:

#tanx=sinx/cosx#

#cos(x/2)=+-sqrt((1+cosx)/2)#

I'll start with the right side, then manipulate it until it looks like the left side:

#RHS=cos^2(x/2)#

#color(white)(RHS)=(cos(x/2))^2#

#color(white)(RHS)=(+-sqrt((1+cosx)/2))^2#

#color(white)(RHS)=(1+cosx)/2#

#color(white)(RHS)=(1+cosx)/2color(red)(*sinx/sinx)#

#color(white)(RHS)=(sinx+sinxcosx)/(2sinx)#

#color(white)(RHS)=(sinx+sinxcosx)/(2sinx)color(red)(*(1/cosx)/(1/cosx))#

#color(white)(RHS)=(sinx/cosx+(sinxcosx)/cosx)/(2sinx/cosx)#

#color(white)(RHS)=(tanx+sinx)/(2tanx)#

#color(white)(RHS)=LHS#

That's the proof. Hope this helped!

Apr 28, 2018

We seek to prove the identity:

# (tanx+sinx)/(2tanx) -= cos^2(x/2)#

Consider the LHS of the expression, and use the definition of tangent:

# LHS = (tanx+sinx)/(2tanx) #

# \ \ \ \ \ \ \ \ = (sinx/cosx+sinx)/(2(sinx/cosx)) #

# \ \ \ \ \ \ \ \ = (cosx/sinx) ((sinx/cosx+sinx)/2) #

# \ \ \ \ \ \ \ \ = ( cosx/sinx * sinx/cosx + cosx/sinx* sinx)/2 #

# \ \ \ \ \ \ \ \ = ( 1 + cosx )/2 #

Now, Consider the RHS, and use the identity:

# cos2A -= 2cos^2A - 1 #

Giving us:

# cosx -= 2cos^2(x/2) - 1 => 1+cosx -= 2cos^2(x/2) #

# :. cos^2(x/2) = (1+cosx)/2 = RHS #

Thus:

# LHS = RHS => (tanx+sinx)/(2tanx) -= cos^2(x/2) \ \ \ # QED

May 6, 2018

#LHS=(tanx+sinx)/(2tanx)#

#=(cancel(tanx)(1+sinx/tanx))/(2cancel(tanx))#

#=(1+cosx)/2=(2cos^2(x/2))/2=cos^2(x/2)=RHS#