How do you divide #(x^4 + 2x^3 +3x -1) /(x^2+2)#?

1 Answer
Apr 29, 2018

Using the distribution method, you can expand the expression.

Explanation:

#(x^4+2x^3+3x-1)/(x^2+2)#

distribute the #(x^4+2x^3+3x-1)# to #x^2# and #2# and now we get:

#(x^4+2x^3+3x-1)/x^2 + (x^4+2x^3+3x-1)/2#

we can further distribute #x^2# and #2# to #(x^4+2x^3+3x-1)#:

#(x^4/x^2##+##(2x^3)/x^2##+##(3x)/x^2##-##1/x^2)##+##((x^4)/2##+##(2x^3)/2##+##(3x)/2##-##1/2)#

This is the simplified version:
#x^2+2x+3/x-1/x^2+x^4/2+x^3+1.5x-1/2#

Sorry but I'm not sure of what you are trying to find so I can only give this answer.