What is the square root of: #x^2 + 4x + 4#?

1 Answer
Apr 29, 2018

The square root equals #x+2#.

Explanation:

First, factor the expression under the radical:

#color(white)=sqrt(x^2+4x+4)#

#=sqrt(x^2+2x+2x+4)#

#=sqrt(color(red)x(x+2)+2x+4)#

#=sqrt(color(red)x(x+2)+color(blue)2(x+2))#

#=sqrt((color(red)x+color(blue)2)(x+2))#

#=sqrt((x+2)^2)#

#=x+2#

That's the simplification. Hope this helped!