#rarr2cos2x-3sinx-1=0#
#rarr2(1-2sin^2x)-3sinx-1=0#
#rarr2-4sin^2x-3sinx-1=0#
#rarr4sin^2x+3sinx-1=0#
#rarr(2sinx)^2+2*(2sinx)*(3/4)+(3/4)^2-(3/4)^2-1=0#
#rarr(2sinx+3/4)^2=1+9/16=25/16#
#rarr2sinx+3/4=+-sqrt(25/16)=+-(5)/4#
#rarr2sinx=+-5/4-3/4=(+-5-3)/4#
#rarrsinx=(+-5-3)/8#
Taking #+ve# sign, we get
#rarrsinx=(5-3)/8=1/4#
#rarrx=npi+(-1)^n*sin^(-1)(1/4)# #nrarrZ#
Taking #-ve# sign, we get
#rarrsinx=(-5-3)/8=-1#
#rarrx=npi+(-1)^n*(-pi/2)# where #nrarrZ#