How do you integrate #int 1/sqrt(9x^2-6x+5) # using trigonometric substitution?

1 Answer
May 13, 2018

#int dx/sqrt(9x^2-6x+5 ) = 1/3 ln abs(3x-1+sqrt(9x^2-6x+5 )) +C#

Explanation:

Complete the square at the denominator:

#9x^2-6x+5 = 9x^2-6x+1+4 = (3x-1)^2+4#

then write the integrand as:

#1/sqrt(9x^2-6x+5 ) = 1/sqrt( (3x-1)^2+4) = 1/2 1/sqrt(((3x-1)/2)^2+1)#

Substitute now:

#(3x-1)/2 = tant#

with #t in (-pi/2,pi/2)#

#dx = 2/3sec^2t dt#

so that:

#int dx/sqrt(9x^2-6x+5 ) = 1/3 int (sec^2tdt)/sqrt(tan^2t+1)#

Use now the trigonometric identity:

#tan^2t+1 = sec^2t#

and as for #t in (-pi/2,pi/2)# the secant is positive:

#sqrt(tan^2t+1) = sec t#

So:

#int dx/sqrt(9x^2-6x+5 ) = 1/3 int (sec^2tdt)/sect#

#int dx/sqrt(9x^2-6x+5 ) = 1/3 int sectdt#

#int dx/sqrt(9x^2-6x+5 ) = 1/3 ln abs(sect + tant) +C#

Undo the substitution, considering that:

#sect = sqrt(tan^2t +1) = sqrt(((3x-1)/2)^2+1) = 1/2sqrt(9x^2-6x+5 )#

#int dx/sqrt(9x^2-6x+5 ) = 1/3 ln abs(1/2sqrt(9x^2-6x+5 )+(3x-1)/2) +C#

and as multiplying the argument of the logarithm by a constant is equivalent to adding a constant to the expression:

#int dx/sqrt(9x^2-6x+5 ) = 1/3 ln abs(3x-1+sqrt(9x^2-6x+5 )) +C#