Using integrals, find the area of the circle #x^2 + y^2 = 1# ?

1 Answer
May 17, 2018

Using polar coordinates:
#x= rho cos theta#
#y= rho sin theta#

we have to integrate for #0<=rho <=1# and #0 <= theta <= 2pi#, so:

#S = int_0^1int_0^(2pi) rho d rho d theta#

#S = int_0^1 rho d rho int_0^(2pi) d theta#

#S = 2pi int_0^1 rho d rho#

#S = 2pi [rho^2/2]_0^1 #

#S = pi#

Alternatively we have that for #x,y >=0#:

#x^2+y^2 = 1#

#y=sqrt(1-x^2)#

For symmetry reasons:

#S = 4int_0^1 sqrt(1-x^2)dx#

substitute:

#x = sint# with #t in [0,pi/2]#

#dx = cost dt#

As in the interval the cosine is positive:

#sqrt(1-x^2) = sqrt(1-sin^2t) = sqrt(cos^2t) = cost#

So:

#S = 4int_0^(pi/2) cos^2tdt#

#S = 4int_0^(pi/2) (1+cos(2t))/2dt#

#S = 2int_0^(pi/2) dt + 2int_0^(pi/2)cos(2t)dt#

#S = 2[t]_0^(pi/2) + [sin2t]_0^(pi/2)#

#S = 2(pi/2-0) + sinpi-sin0 = pi#